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In this paper we study a dynamical system consisting of a rigid body and an inviscid
incompressible fluid. Two general configuraions of the system are considered: (a) a
rigid body with a cavity completely filled with a fluid and (b) a rigid body surrounded
by a fluid. In the first case the fluid is confined to an interior (for the body) domain and
in the second case it occupies an exterior domain, which may, in turn, be bounded by
some fixed rigid boundary or may extend to infinity. The aim of the paper is twofold:
(i) to develop Arnold’s technique for the system ‘body + fluid’ and (ii) to obtain
sufficient conditions for the stability of steady states of the system. We first establish
an energy-type variational principle for an arbitrary steady state of the system. Then
we generalize this principle for states that are steady either in translationally moving
in some fixed direction or rotating around some fixed axis coordinate system. The
second variations of the corresponding functionals are calculated. The general results
are applied to a number of particular stability problems. The first is the stability
of a steady translational motion of a two-dimensional body in an irrotational flow.
Here we have found that (for a quite wide class of bodies) the presence of non-zero
circulation about the body does not affect its stability – a result that seems to be new.
The second problem concerns the stability of a steady rotation of a force-free rigid
body with a cavity containing an ideal fluid. Here we rediscover the stability criterion
of Rumyantsev (see Moiseev & Rumyantsev 1965). The complementary problem –
when a body is surrounded by a fluid and both body and fluid rotate with constant
angular velocity around a fixed axis passing through the centre of mass of the body – is
also considered and the corresponding sufficient conditions for stability are obtained.

1. Introduction
In this paper we present new general results concerning the stability of the me-

chanical system ‘rigid body + inviscid fluid’. We consider two general configurations
of the system: (a) a rigid body with a cavity filled with a fluid and (b) a rigid body
surrounded by a fluid. In the first case the fluid is confined to an interior (for the
body) domain. In the second case it occupies an exterior domain, which may, in turn,
be bounded by some fixed rigid boundary or it may extend to infinity.

Studies of systems of both types have a long hystory, and the literature on the
subject is too extensive be comprehensively reviewed here. We therefore restrict
ourselves to only a few remarks on the previous results.

Since the fundamental work of Kelvin (see e.g. Lamb 1932, chapter XII, § 384)
who experimentally discovered that a heavy top with a fluid-filled cavity is stable
if the cavity is oblate and unstable if it is prolate, the stability of type (a) system
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has been studied by numerous authors. Most of the results that are available in the
literature were obtained either for equilibria (states of rest) of the system or for a
steady rotation of the system as a whole around some fixed axis. Extensive historical
reviews on the subject may be found in the books by Moiseev & Rumyantsev (1965)
and by Myshkis et al. (1987).

The flow associated with a rigid body moving in an inviscid incompressible fluid
has also been intensively studied. In particular, the related mathematical theory of
irrotational flow is quite well developed for both two- and three-dimensional problems
(see e.g. Lamb 1932; Kelvin & Tait 1912; Batchelor 1967). The general situation of a
rotational flow is much more complicated. Here most of the studies were concentrated
on calculation of the force and moment exerted on a moving body (see e.g. the recent
papers by Auton, Hunt & Prud’homme 1988 and by Howe 1995). The stability of
a rigid body in a fluid flow has received much less attention. Apart from a number
of classical results on the stability of a body in an uniform irrotational flow (see
Lamb 1932; Kelvin & Tait 1912; Lyapunov 1954), there are only few (known to us)
publications on the subject, e.g. Voinov & Petrov (1973, 1977) studied the stability of
a rigid body in a non-uniform irrotational flow and in a flow with constant vorticity.

The aim of the present paper is twofold: first, to generalize Arnold’s well-known
technique (Arnold 1965a,b, 1966) so as to make it appropriate for the study of the
system ‘body + fluid’ and, secondly, to investigate the stability of some steady states
of both type (a) and type (b) systems. Accordingly, we first concentrate our efforts
on the development of Arnolds’ technique, and then we apply the general theory to
obtain the stability results for some simple particular situations.

Our way of adapting Arnold’s technique is quite straightforward but not trivial.
Arnold’s original technique was based on the underlying Hamiltonian structure of
the Euler equations and, in particular, on the fact that the configuration space for an
ideal incompressible fluid forms a group of volume-preserving diffeomorphisms of a
(fixed) flow domain (Arnold 1966). For the system ‘body + fluid’, however, the flow
domain changes with time, so that the configuration space does not form any group.
In our treatment we avoid any explicit reference to the Hamiltonian structure of the
system considered. Among other things, this may give us the possibility of generalizing
the variational principles and the related stability results which we obtain here to
systems that are not Hamiltonian. For instance, one can easily consider the energy
dissipation in finite-dimensional degrees of freedom, i.e. add an extra term describing
a velocity-dependent dissipative force to the equations of motion of the body.

Another important generalization of Arnold’s technique concerns the situation
when the basic state of the system is steady in some translationally moving (or
steadily rotating round some fixed axis) frame of reference. This corresponds to a
rigid body moving with constant velocity through a fluid that extends to infinity in
some or all directions. We cannot just use the coordinate system fixed on the body
because then the total energy of the system is infinite. Instead of this, we formulate
the problem in the coordinate system which is fixed in space (so that the fluid is at
rest at infinity) and construct the functional which is a certain linear combination
of the total energy and the total momentum of the system and which has a critical
point in the basic state considered. Such a variational principle is similar to that of
Benjamin (1972).

The variational principles presented in the paper state that the total energy (or a
linear combination of the energy and the momentum or the angular momentum) of
the system has a critical point in a given basic state on the set of all ‘isovortical flows’.
The generalization of Arnold’s original ‘isovorticity’ condition to the system ‘body +
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fluid’ is given in a differential form first formulated for the case of fixed boundaries
in Moffatt (1986) and Vladimirov (1987a). Arnold’s general theory says (Arnold
1966) that the corresponding second variations are the invariants of the appropriate
linearized equations provided that we identify the infinitesimal variations with small
perturbations whose evolution is governed by these equations. The linear stability
analysis reduces therefore to the study of the properties of the second variation.

The general theory is applied to three simple particular problems.
(1) The first one is the stability of a steady translational motion of a two-dimensional

body in an irrotational flow. It is shown that such a motion of the body is stable if it
moves in the direction corresponding to the maximum principal value of the added
mass tensor. It is interesting that (for a quite wide class of bodies) the presence of
non-zero circulation about the body does not affect its stability – a result that seems
to be new.

(2) The second problem concerns the stability of a steady rotation of a force-free
rigid body with a cavity containing an ideal fluid. Here we rediscover the stability
criterion of Rumyantsev (see Moiseev & Rumyantsev 1965) which states that the
system is stable provided it rotates around the principal axis of its moment of inertia
tensor which corresponds to the maximum value of the moment of inertia.

(3) The third problem is, in some sense, complementary to the second one: a body
and surrounding fluid are placed inside a fixed axisymmetric domain, and the basic
steady state whose stability is studied is a steady rotation of both the body and
the fluid around the axis of symmetry of the domain. The result is that this state is
linearly stable if the density of the fluid is less than that of the body and the axis of
rotation corresponds to the smallest moment of inertia of the body.

The results presented in this paper are interesting from two view-points: first,
they lay the general basis for the subsequent stability analysis in various particular
situations; secondly, these results represent a further development of Arnold’s method
in hydrodynamic stability theory.

The plan of the paper is as follows. In § 2 we discuss the equations of motion
for the dynamical system ‘rigid body + fluid’. We assume that independent potential
external forces are applied both to the body and to the fluid. The basic steady state
whose stability is investigated is an equilibrium of the body in a steady rotational
flow, so that in this state the force and the moment exerted on the body by the
fluid are balanced by a suitable external force and torque applied to the body. In § 3
we show that the energy of the system has a stationary value on the set of all the
states of the system in which fluid flows are ‘isovortical’ to the basic steady flow. The
corresponding second variation is calculated in § 4.

In §§ 5 and 6 we deal with variational principles for those states of the system
that are steady relative to some translationally moving or steadily rotating coordinate
system (such states may correspond to a stationary, purely translational motion of
a body in a channel filled with a fluid or to a steady rotation of a body in a fluid).
We demonstrate that conserved functionals that are certain linear combinations of
the total energy and the total momentum or angular momentum of the system have
a critical point at the basic state provided that we take account only of ‘isovortical’
variations of the velocity field. The second variation of these functionals at critical
points are calculated.

In § 7 the two-dimensional problem is considered: the body is an infinite cylinder
with an arbitrary cross-section moving perpendicularly to its axis, the flow is two-
dimensional, i.e. it does not depend on the coordinate along the axis of a cylinder. In
this case we establish a more general variational principle than for three-dimensional
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problems, namely, we waive the ‘isovorticity condition’ and admit arbitrary variations
of the velocity field u. The functional that has a critical point in the steady state is
a certain linear combination of all constants of motion of the system. The second
variation of this functional is calculated.

Finally, § 8 contains applications of the theory developed in the previous sections
to three particular situations, namely, we study (i) the stability of a two-dimensional
body moving with a constant velocity in an irrotational flow, (ii) the stability a force-
free steady rotation of a rigid body with a cavity completely filled with a fluid and
(iii) the stability of a body steadily rotating in a fluid.

2. Basic equations
Consider a dynamical system consisting of an incompressible, homogeneous and

inviscid fluid and a rigid body. Let D be a domain in three-dimensional space that
contains both the fluid and the rigid body, and let Db(t) be a domain (inside D,
i.e. Db(t) ⊂ D) occupied by the body. The domain Df(t) = D − Db(t) is completely
filled with fluid; its boundary ∂Df(t) consist of two parts: the inner boundary ∂Db(t)
representing the surface of the rigid body and the outer boundary ∂D which is fixed
in the space.

In general, motion of the rigid body may or may not be restricted by some
geometric constraints. The number of degrees of freedom is denoted by N where
necessarily N 6 6. Motion of the body is described by its generalized coordinates
qα(t) and velocities vα(t) = q̇α ≡ dqα/dt (α = 1, ..., N). Fluid motion is described by
velocity field ui(x, t) (i = 1, 2, 3) and the pressure field p(x, t), here x ≡ (x1, x2, x3) are
Cartesian coordinates. From here on we shall use two types of indices, Greek and
italic. Greek indices take values from 1 to N and correspond to finite-dimensional
degrees of freedom of the system ‘body + fluid’, while italic indices take values from
1 to 3 and denote Cartesian components of vectors and tensors. In the rest of the
paper the summation is implied over repeated both Greek and italic indices.

Forces that are external with respect to the system ‘body + fluid’ are applied both
to the rigid body and to the fluid. The generalized force applied to the body is
characterized by potential energy Π(qα). The external force applied to the fluid is a
body force (per unit mass) with a potential Φ(x).

The equations of motion for the fluid are the Euler equations:

Du = −1

ρ
∇p− ∇Φ, ∇ · u = 0 in Df, (2.1)

where ρ is the (constant) density of the fluid and D ≡ ∂/∂t + u · ∇. The equation
governing the evolution of vorticity field ω(x, t) ≡ ∇× u follows from (2.1):

∂ω

∂t
= ∇× (u× ω). (2.2)

Motion of the rigid body obeys the standard Lagrange equations of classical
mechanics which may be written in the form

d

dt

[
∂T

∂vα

]
− ∂T

∂qα
= −∂Π

∂qα
+ Fα. (2.3)

In (2.3), T (qα, vα) is the kinetic energy of the body given by the equation

T = 1
2
Mwiwi + 1

2
Iikσiσk, (2.4)
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where Iik is the moment of inertia tensor; the velocity of the centre of mass w = dr/dt
and the angular velocity σ are considered as functions of the generalized velocities
vα and coordinates qα (if the constraints on the body are holonomic and time-
independent, as we shall always assume here, then kinetic energy T is a homogeneous
quadratic form in the generalized velocities vα (see e.g. Goldstein 1980)). Fα is given
by the equation

Fα =

∫
∂Db

(
n · ∂r
∂qα

+
[(
x− r)× n] · ∂σ

∂vα

)
p ds (2.5)

and represents the α-component of the generalized force exerted on the body by the
fluid. In (2.5), n is the unit normal to the surface ∂Db; throughout the paper, for all
boundaries the direction of n is always taken to be outward with respect to the fluid
domain Df .

Remark. An instantaneous angular velocity σ of the rigid body is defined by the
equation

σi ≡ − 1
2
eijk

dPjl
dt

Pkl

where eijk is the alternating tensor;
[
Pik
]

is an orthogonal matrix (PilPkl = δik)
representing rotation from the axes Ox1x2x3 of the coordinate system fixed in space
to the axes O′x′1x′2x′3 of the coordinate system fixed in the body (with the origin in its
centre of mass), so that the position vector x of a point in the body relative to the
space axes and the position vector x′ of the same point measured by the body set of
axes are related by the formula xi = ri +Pijx

′
j . The rotation matrix

[
Pik
]

is a function
of the generalized coordinates qα; angular velocity σ can therefore be expressed in
the form

σi = − 1
2
eijk

∂Pjl

∂qα
Pklvα. (2.6)

It is (2.6) that allows us to write the generalized force Fα in the form (2.5).
Boundary conditions for velocity field u(x, t) are the usual ones of no normal flow

through the rigid boundaries:

u · n = 0 on ∂Db, (2.7a)

u · n = (w + σ × (x− r)) · n on ∂Db. (2.7b)

Equations (2.1), (2.3) with boundary conditions (2.7) give us the complete set of
equations governing the motion of the system ‘body + fluid’.

The conserved total energy of the system is given by

E = Ef + Eb = const, Eb ≡ T +Π, (2.8a)

Ef ≡
∫
Df
ρ
(uiui

2
+ Φ

)
dτ, dτ ≡ dx1dx2dx3. (2.8b)

Steady solutions of the problem (2.1), (2.3), (2.7) given by

vα = 0, qα = Qα, r = R = 0, u = U (x), p = P (x), ω = Ω(x), (2.9a)

w = W = 0, σ = Σ = 0, Pij = P0ij = δij (2.9b)

satisfy the equations

Ω×U = −∇H, H ≡ P/ρ+ Φ+ 1
2
U 2, ∇·U = 0 in Df0; (2.10)
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− ∂Π
∂Qα

+

∫
∂Db0

(
n · ∂R
∂Qα

+
[(
x− R)× n] · ∂Σ

∂Vα

)
P ds = 0; (2.11)

and boundary conditions

U · n = 0 on ∂D and on ∂Db0. (2.12)

In (2.10)–(2.12) boundary ∂Db0 corresponds to the equilibrium position of the rigid
body. In obtaining (2.11) we used the fact that, according to (2.4), (2.9), ∂T/∂Qα = 0.
Steady solution (2.9) represents an equilibrium of the body in a steady rotational
flow.

3. Variational principle
In this section, following the procedure of Vladimirov (1987a), who proposed a

somewhat simpler and more descriptive (from a physical view-point) form of the
original variational principle of Arnold (1965b), we shall show that the total energy
of the dynamical system ‘body + fluid’ has a stationary value at the steady solution
(2.9) on the set of all possible fluid flows that are ‘isovortical’ to the basic flow (see
Arnold 1965b). The ‘isovorticity’ condition means that we admit only such variations
of the velocity field u that preserve the velocity circulation over any material contour.

To formulate the variational principle we introduce the family of transformations

x̃i = x̃i(x, ε), (3.1a)

q̃α = q̃α(ε), (3.1b)

depending on a parameter ε > 0 where the functions x̃i(x, ε) and q̃α(ε) are twice
differentiable with respect to ε and the value ε = 0 corresponds to the steady solution
(2.9):

x̃i(x, 0) = xi, q̃α(0) = Qα. (3.2)

The transformations defined by (3.1)–(3.2) can be interpreted as a ‘virtual motion’
of the system ‘body + fluid’ where ε plays the role of a ‘virtual time’, x̃(x, ε) is the
position vector at the moment of ‘time’ ε of a fluid particle whose position at the
initial instant ε = 0 was x (in other words, x (x ∈ Df0) serves as a label to identify
the fluid particle, while x̃(x, ε) represents its trajectory) and where the functions q̃α(ε)
determine the position and the orientation of the rigid body at the moment of ‘time’
ε. In such a motion, the domain Df0 = D̃f(0) evolves to a new one D̃f(ε) which is
completely determined by the position and the orientation of the rigid body, i.e. by
the generalized coordinates q̃α(ε).

Functions x̃(x, ε), q̃α(ε) are specified through yet another set of functions f(x̃, ε),
hα(ε) by the equations

dx̃/dε = f(x̃, ε), (3.3a)

dq̃α/dε = hα(ε), (3.3b)

where hα(ε) are arbitrary differentiable functions, while f(x̃, ε) is an arbitrary vector
field differentiable with respect to ε and satisfying the conditions

∇̃ · f = 0 in D̃f(ε), (3.4a)

f · n = 0 on ∂D̃. (3.4b)

f · n =
[
r̃ε + ϕ̃ε ×

(
x̃− r̃)] · n on ∂D̃b(ε). (3.4c)
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In (3.4),

r̃ε ≡ ∂r̃

∂q̃α
hα, ϕ̃iε ≡ − 1

2
eijk

∂P̃jl

∂q̃α
P̃klhα. (3.5)

In terms of ‘virtual motions’ the functions f(x̃, ε) and hα(ε) entering (3.3) have a
natural interpretation as the ‘virtual velocities’ of the fluid and the rigid body. The
conditions (3.4) mean that in ‘virtual motion’ the fluid remains incompressible and
that there is no fluid ‘flow’ through the rigid boundaries.

The actual velocity field of the fluid and the actual generalized velocities of the
rigid body in ‘virtual motion’ are described by twice differentiable (with respect to ε)
functions ũ(x̃, ε) and ṽα(ε) such that the value ε = 0 corresponds to the steady state
(2.9):

ũ(x̃, ε)
∣∣
ε=0

= U (x̃), ṽα(ε)
∣∣
ε=0

= 0. (3.6)

In addition, the field ũ(x̃, ε) satisfies the conditions

∇̃ · ũ = 0 in D̃f, (3.7a)

ũ · n = 0 on ∂D̃, (3.7b)

ũ · n =
(
w̃ + σ̃ × (x̃− r̃)

)
· n on ∂D̃b(ε), (3.7c)

where, as before, w̃, σ̃ are considered as functions of ṽα(ε) and q̃α(ε). The evolution
with the ‘time’ ε of the generalized velocities ṽα(ε) is prescribed by the equation

dṽα/dε = gα(ε) (3.8)

with some differentiable function gα(ε). Note that the functions gα(ε) and hα(ε) which
determine the evolution in the ‘virtual motion’ of the generalized velocities and
coordinates are both arbitrary, so that ṽα(ε) and q̃α(ε) vary independently.

The evolution of the field ũ(x̃, ε) is defined through the evolution of vorticity
ω̃(x̃, ε) ≡ ∇̃× ũ by the equation

ω̃ε = ∇̃× (f × ω̃), (3.9)

where subscript ε denotes partial derivative with respect to ε. Equation (3.9) means
that the vorticity field ω̃ is considered as a passive vector advected by the ‘virtual
flow’ rather than as a field related to the ‘virtual velocity’ f by the curl-operator; in
other words, the evolution of ω is the same as that of a material line element δl or
as that of a frozen-in magnetic field in ideal MHD. Yet another meaning of equation
(3.9) is that the circulation of the velocity field ũ(x̃, ε) round any closed material curve
is conserved in the ‘virtual motion’, this, in turn, implies that (3.9) is equivalent to the
original isovorticity condition of Arnold (1965b).

On integrating (3.9) we obtain

ũε = f × ω̃ + ∇̃α (3.10)

with a certain function α(x̃, ε) which, as follows from (3.7), (3.10), can be found by
solving the problem

∇̃2α = −∇̃ · (f × ω̃) in D̃f, (3.11a)

n · ∇̃α = −n · (f × ω̃) on ∂D̃, (3.11b)

n · ∇̃α = ũε · n− n · (f × ω̃) on ∂D̃b(ε), (3.11c)
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where ũε · n can be obtained by differentiating the condition (3.7c) with respect to ε.
Function α(x̃, ε) is uniquely determined by (3.11a) with boundary conditions (3.11b,c)
provided that the domain D̃f(ε) is singly-connected.

Remark. Though (3.10) also could be used as a primary condition for defining the
evolution of the field ũ(x̃, ε), from a view-point of physical interpretation (3.9) seems
preferable.

Assuming that ε is small we define the first and second variations of the velocity
field of the fluid u and the generalized velocities and coordinates of the rigid body vα,
qα as follows:

δx ≡ f(x, 0) ε, δu(x) ≡ ũε(x, 0) ε, δ2u(x) ≡ 1
2
ũεε(x, 0) ε2,

δvα ≡ vαε(0) ε = gα(0)ε, δ2vα ≡ 1
2
ṽαεε(0) ε2 = 1

2
gαε(0) ε2,

δqα ≡ q̃αε(0) ε = hα(0) ε, δ2qα ≡ 1
2
q̃αεε(0) ε2 = 1

2
hαε(0) ε2.

 (3.12)

In (3.12), δx is the Lagrangian displacement of the fluid element whose position at
time t in the undisturbed flow was x. The first and second variations of the energy
(2.8) considered as a functional of ũ(x̃, ε), ṽα(ε), q̃α(ε) are, by definition,

δE ≡ dE/dε
∣∣
ε=0
ε, δ2E ≡ 1

2
d2E/dε2

∣∣
ε=0
ε2. (3.13)

The first variation of E is

δE = δEf + δEb.

From (2.4) it follows that

δEb = MWiδwi + 1
2
δIikΣiΣk + IikΣiδσk +

∂Π

∂Qα
δqα (3.14)

where

δw =
∂W

∂Qα
δqα +

∂W

∂Vα
δvα, δσ =

∂Σ

∂Qα
δqα +

∂Σ

∂Vα
δvα, δIik =

∂Iik

∂Qα
δqα.

Since in the basic state of the system W = Σ = 0, we obtain

δEb =
∂Π

∂Qα
δqα. (3.15)

To calculate δEf we first note that

d

dε

∫
D̃f (ε)

F(x̃, ε)dτ =

∫
D̃f (ε)

Fεdτ+

∫
∂D̃b(ε)

F
(
f · n)ds

for any function F(x̃, ε) (this follows from the formula for the rate of change of
material volume integral; see e.g. Batchelor 1967). With help of this we find

dEf(0)

dε
=

∫
D̃f (0)

ρU · ũεdτ+

∫
∂D̃b(0)

ρ
(

1
2
U 2 + Φ

) (
f · n)ds.

On substituting (3.10) in this equation, we obtain

dEf(0)

dε
=

∫
D̃f (0)

ρ{f · (Ω×U ) +U · ∇̃α}dτ+

∫
∂D̃b(0)

ρ
(

1
2
U 2 + Φ

) (
f · n)ds.

By using (2.10), Green’s theorem and the boundary condition (3.4c), this can be
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transformed to
dEf(0)

dε
= −

∫
∂D̃b(0)

P [r̃ε + ϕ̃ε ×
(
x̃− r̃)] · n ds . (3.16)

Finally, from (3.15), (3.16) it follows that

δE =
∂Π

∂Qα
δqα −

∫
∂Db(0)

P (δr + δϕ× (x− r)) · n ds. (3.17)

In (3.17) the ‘tildes’ have been dropped (in accordance with the condition x̃(x, 0) = x).
The comparison of (3.17) with (2.11) then shows that δE = 0. Thus, we have shown
that the energy of the system ‘body + fluid’ has a stationary value at any steady
solution of the form (2.9) provided that we take account only of ‘isovortical’ fluid
flows. This result is a natural generalization of Arnold’s well-known variational
principle (Arnold 1965b).

4. The second variation
Let us now calculate the second variation of the energy (2.8) at the stationary point.

We have

δ2E = δ2Ef + δ2Eb. (4.1)

Consider first the part of δ2E corresponding to the rigid body degrees of freedom.
From (2.4), (2.9) it follows that

δ2Eb = 1
2
Mδwiδwi +MWiδ

2wi

+ 1
2
δ2IikΣiΣk + δIikΣiδσk + 1

2
Iikδσiδσk + IikΣiδ

2σk + δ2Π, (4.2)

where

δ2Π = 1
2

∂2Π

∂Qα∂Qβ
δqαδqβ +

∂Π

∂Qα
δ2qα.

Since in the basic state (2.9) W = Σ = 0, (4.2) reduces to

δ2Eb = 1
2
Mδwiδwi + 1

2
Iikδσiδσk + 1

2

∂2Π

∂Qα∂Qβ
δqαδqβ +

∂Π

∂Qα
δ2qα. (4.3)

Consider now δ2Ef . It can be shown (see the Appendix) that for any function F(x̃, ε)
the following equation holds:

d2

dε2

∫
D̃f
F(x̃, ε)dτ =

∫
D̃f
Fεεdτ+

∫
∂D̃b

(2Fε + yε · ∇̃F)
(
yε · n

)
ds

+

∫
∂D̃b

F(r̃ε × ϕ̃ε) · n ds+

∫
∂D̃b

F
[
r̃εε + ϕ̃εε ×

(
x̃− r̃)] · n ds (4.4)

where

yε ≡ r̃ε + ϕ̃ε ×
(
x̃− r̃). (4.5)

Applying this formula to d2Ef/dε
2, we obtain

d2Ef(0)

dε2
=

∫
D̃f (0)

ρ(ũ2
ε +U · ũεε)dτ+

∫
∂D̃b(0)

ρ(2U · uε + yε · ∇̃G)
(
yε · n

)
ds

+

∫
∂D̃b(0)

ρG(r̃ε × ϕ̃ε + r̃εε + ϕ̃εε × x̃) · n ds, (4.6)
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where

G ≡ 1
2
U 2 + Φ. (4.7)

From (3.10) we have

ũεε|ε=0 = fε ×Ω+ f × ω̃ε + ∇̃αε.
On substituting this in the volume integral on the right-hand side of (4.6) and using
(2.10), we obtain∫

D̃f (0)

ρU · ũεεdτ =

∫
D̃f (0)

ρ(−fε · ∇̃H +U · (f × ω̃ε

)
+U · ∇̃αε)dτ,

whence, after using Green’s formula and the conditions (2.12) and (3.4),∫
D̃f (0)

ρU · ũεεdτ =

∫
D̃f (0)

ρU · (f × ω̃ε

)
dτ+

∫
∂D̃b(0)

ρH
(
fε · n

)
ds. (4.8)

Boundary conditions for the field fε are given by (A3) in the Appendix. After using
these boundary conditions in (4.8), substituting the resulting formula in (4.6) and
after some further manipulations, one can arrive at the formula

d2Ef(0)

dε2
=

∫
D̃f (0)

ρ(ũ2
ε +U · (f × ω̃ε

)
)dτ

−
∫
∂D̃b(0)

P (r̃ε × ϕ̃ε + r̃εε + ϕ̃εε × x̃) · n ds

+

∫
∂D̃b(0)

(2ρU · uε − yε · ∇̃P + ρf · ∇̃H)
(
yε · n

)
ds. (4.9)

Using (2.6), (3.5), it can be shown that

d2r̃

dε2

∣∣∣∣
ε=0

=
∂R

∂Qα

∂2q̃α

∂ε2
+

∂2R

∂Qα∂Qβ

∂q̃α

∂ε

∂q̃β

∂ε
,

d2ϕ̃

dε2

∣∣∣∣
ε=0

=
∂Σ

∂Vα

∂2q̃α

∂ε2
+

∂2Σ

∂Vα∂Qβ

∂q̃α

∂ε

∂q̃β

∂ε
.

 (4.10)

Finally, collecting (4.3), (4.9) and taking account of (4.10), we obtain

δ2E = δ2EA + δ2Ec + δ2Eb, (4.11a)

δ2EA ≡ 1

2

∫
Df0

ρ{(δu)2
+U · (δx× δω)}dτ, (4.11b)

δ2Ec ≡ 1

2

∫
∂Db0
{2ρU · δu− δy · ∇P }(δy · n)ds+

1

2

∫
∂Db0

ρ
(
δy · n)(δx · ∇H)ds

−1

2

∫
∂Db0

P {n · [δr × δϕ]+ Aαβδqαδqβ + Bαβδqαδqβ}ds, (4.11c)

δ2Eb ≡ 1
2
Mδwiδwi + 1

2
Iikδσiδσk + 1

2

∂2Π

∂Qα∂Qβ
δqαδqβ, (4.11d)
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where δy ≡ δr+δϕ×x is the displacement of a point on the body surface and where

Aαβ ≡ n · Rαβ, Bαβ ≡ n · [Σαβ × x], (4.12a)

Rαβ ≡ ∂2R

∂Qα∂Qβ
, Σαβ ≡ ∂2Σ

∂Vα∂Qβ
. (4.12b)

In (4.11) δ2EA is precisely the second variation of the energy of the fluid in the fixed
domain Df0 (Arnold 1965b); δ2Eb involves only the variations of the generalized
coordinates and velocities of the rigid body; δ2Ec depends on the variations of fluid
variables and rigid body variables, so it may be interpreted as that part of δ2E
appearing due to interaction between the body and the flow.

The remarkable fact about the second variation δ2E is that if we consider the
variations δx, δu and δqα as the infinitesimal disturbances, whose evolution is governed
by appropriate linearized equations, then δ2E is an invariant of these equations
(Arnold 1965a, b, 1966; see also Holm et al. 1985; Vladimirov 1987b). From this fact
it immediately follows that the basic state (2.9) is linearly stable provided that δ2E
is positive definite. The linear stability problem thus reduces to the analysis of the
second variation.

4.1. Euler angles

Now consider the situation when no constraints are imposed on the motion of the
rigid body. In this case it is natural to take as the generalized coordinates three
Cartesian components of the radius-vector of the centre of mass of the body and
three Euler angles φ, θ, ψ that characterize the orientation of the body in space. In
defining the Euler angles we shall use the xyz-convention (as described in Goldstein
1980), so that they are specified by an initial rotation about the original z-axis through
an angle φ, a second rotation about the intermediate y-axis, and a third rotation about
the final x-axis through an angle ψ. With this choice the components of the angular
velocity σ along the space axis are (see Goldstein 1980, p. 610)

σ1 = ψ̇ cos θ cosφ− θ̇ sinφ,

σ2 = ψ̇ cos θ sinφ+ θ̇ cosφ,

σ3 = φ̇− ψ̇ sin θ.

 (4.13)

Now qα = (r,φ), vα = (ṙ, φ̇) where we use the notation φ = (φ1, φ2, φ3) ≡ (ψ, θ, φ). The
expression for the second variation given by (4.11) remains almost unchanged except
that now δϕ = δφ, δw = δṙ, δσ = δφ̇ = (δψ̇, δθ̇, δφ̇), Aαβ = 0 and Bαβδqαδqβ =

B̃ikδφiδφk where matrix [B̃ik] is given by

[
B̃ik
] ≡

 0 −ez · (x× n) ey · (x× n)
−ez · (x× n) 0 −ex · (x× n)
ey · (x× n) −ex · (x× n) 0

 .

Moreover, with help of the equilibrium condition (2.11) it can be shown that

−1

2

∫
∂Db0

PB̃ikδφiδφkds = Πψδθδφ−Πθδψδφ+Πφδψδθ,

where Πφi ≡ ∂Π/∂φi at r = 0, φ = 0.
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4.2. δ2E for a sphere

Consider a particular case of a spherical body of radius a. Clearly, no torque is exerted
on the spherical body by an inviscid fluid. We suppose that the potential Π = Π(r)
is independent of the Euler angles (i.e. no external moment of force is applied to the
body). Then the Euler angles of the body are cyclic coordinates and can therefore be
ignored. This means that in (4.11) all terms with the variations of the Euler angles
can be discarded and the second variation simplifies to

δ2E = δ2EA + δ2Ec + δ2Eb, (4.14a)

2δ2EA =

∫
Df0

ρ{(δu)2
+U · (δx× δω)}dτ, (4.14b)

2δ2Ec =

∫
∂Db0
{2ρU · δu− δr · ∇P }(δr · n)ds+

∫
∂Db0

ρ(δr · n)(δx · ∇H)ds, (4.14c)

2δ2Eb = Mδṙiδṙi +
∂2Π

∂Ri∂Rk
δriδrk. (4.14d)

If, in addition, the basic flow is such that Ω · n = 0 on ∂Db0, then it can be shown
from (2.10) that H = const on ∂Db0, and (4.14c) reduces to the equation

2δ2Ec =

∫
∂Db0

ρ{2U · δu+ δr · ∇G}(δr · n)ds,
where G is defined by (4.7).

Remark A. All the results described above were obtained for a rigid body placed
in an arbitrary rotational inviscid flow. However it is easy to see that these results
are equally valid for a rigid body with a cavity containing an ideal fluid. The only
difference between these two problems lies in interpreting the boundary ∂Db, namely,
for a body with fluid-filled cavity we consider the surface ∂Db as an internal (for
the body) boundary which represents the boundary of the cavity, i.e. ∂Db is an outer
boundary of the fluid domain Df which is completely filled with fluid. With this
interpretation the basic state given by (2.9)–(2.11) represents an equilibrium of a rigid
body with a cavity containing a fluid which in turn is in steady motion with velocity
field U (x).

Remark B. The theory developed in the previous sections can be easily modified to
cover the situation when there are n rigid bodies in a fluid or the situation when a
cavity in the rigid body contains fluid and other rigid bodies.

5. Variational principles for the basic states that are steady relative to a
moving frame of reference

The variational principle that we have constructed in § 3 is applicable only to the
situation when the whole system ‘body + fluid’ is confined to some bounded domain
D with rigid boundary ∂D fixed in space. In the case when the fluid domain extends
to infinity the variational principle of § 3 does not work because in the basic state
(2.9) the energy of the system is infinite. In general, there are two ways to deal with
such a situation. In the first one we could construct some functional (regularized
functional) which, first, is an invariant of the equations of motion, second, exists at
the basic state and, third, has a critical point at this state. Usually it turns out to
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be quite a difficult problem. In this section, we shall use another, somewhat more
physically motivated, approach to handle the problem. Namely, we shall establish a
variational principle for an unsteady state which represents a stationary translational
motion of the body along some fixed axis through a fluid that extends to infinity at
least in the direction of motion of the body and is at rest there (so that such a state
of the system is steady relative to some moving set of axes). Throughout this section
we shall consider only a body that moves through surrounding fluid (the case of a
body with fluid-filled cavity moving as a whole is trivial).

Let the system ‘body + fluid’ be invariant with respect to translations along some
fixed axis, say the z-axis. To guarantee this it is sufficient to assume, first, that the
outer boundary ∂D is invariant under such translations (so that it may be an infinite
cylinder of an arbitrary cross-section) and, second, that external forces applied to the
system have zero components along the z-axis, i.e.

ez · ∇Φ = 0, ∂Π
(
r,φ
)
/∂r3 = 0. (5.1)

Under these assumptions there exists an additional invariant of the problem, a z-
component of the total momentum of the system

N = Nb +Nf = const, Nb = Mez · ṙ, Nf =

∫
Df
ρ ez · u dτ. (5.2)

When the fluid extends to infinity in all directions the volume integral in (5.2) that
represents the total momentum of the fluid is, in general, not absolutely convergent
and depends on the way in which the volume of integration is allowed to tend to
infinity. In this case it is natural to use the vortex momentum defined by the equation
(Vladimirov 1977)

Nω =
1

2

∫
Df
ρ ez · (x× ω)dτ− 1

2

∫
∂Db

ρ ez · (x× (n× u))ds. (5.3)

The volume integral appearing in (5.3) exists and the total momentum of the system
‘body + fluid’ given by

N1 = Nb +Nω (5.4)

is conserved provided that (Vladimirov 1977, 1979)

r4|ω| → 0, r|u| → 0 as r ≡ |x| → ∞. (5.5a)

It can be shown (see Vladimirov 1977, 1979) that in the presence of outer boundaries
that are invariant under translations in the z-direction (i.e. ez · n = 0 on ∂D) the total
momentum (5.4) is also an invariant of the governing equations if ω · n = 0 on ∂D
(note that this condition is consistent with equations of motion in the sense that if
it is satisfied at some initial instant t = 0 then it holds for any t > 0). For the sake
of simplicity we shall assume that the fluid extends to infinity in all directions. The
existence of the energy invariant (2.8) then requires that r3/2|u| → 0 as r → ∞ (note
that such a behaviour at infinity is certainly satisfied for the most interesting case of a
dipole asymptotic). Thus, for the existence of both invariants N1 and E it is sufficient
to take the following conditions at infinity†

r4
∣∣ω ∣∣→ 0, r3/2

∣∣u ∣∣→ 0 as r →∞. (5.5b)

† In general, it is possible to use condition (5.5a) instead of (5.5b). In this case we should replace
the true energy of the fluid Ef (2.8b) by the vortex energy (see e.g. Batchelor 1967). For our problem
it is not necessary because the behaviour of the velocity field at infinity due to a moving body is
given by a dipole asymptotic |u| ∼ 1/r3.
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5.1. Basic state

The basic state whose stability will be studied is given by

u(x, t) = U
(
x− R(t)

)
, w = W (t) = U0ez, σ = Σ = 0,

r(t) = R(t) = U0tez, ψ = 0, θ = 0, φ = 0.

}
(5.6)

Here ψ, θ and φ are the Euler angles introduced in § 4; U0 is a constant velocity of a
translational motion of the body (along the z-axis). The velocity field U is a solution
of the problem

Ω×U −U0

(
ez · ∇)U = −∇H, ∇ ·U = 0 in Df0(t);

U · n = U0ez · n on ∂Df0(t), r3/2
∣∣U ∣∣→ 0 and r4

∣∣Ω ∣∣→ 0 as r →∞,

}
(5.7)

where H ≡ P/ρ + Φ + 1
2
U 2. Note that as indicated in (5.7) the fluid domain in the

basic state now depends on time.
In the basic state, the force and torque exerted on the body by the fluid are balanced

by the externally applied force and torque:

−∂Π/∂r +

∫
∂Db0

Pnds = 0, (5.8a)

−∂Π/∂φ+

∫
∂Db0

P ((x− R)× n)ds = 0. (5.8b)

Here, in accordance with our assumption (5.1), Π = Π
(
r1, r2,φ

)
; the derivatives

∂Π/∂r and ∂Π/∂φ are evaluated at the point r1 = R1, r2 = R2, φ = 0.

5.2. Variational principle

As in § 3 we introduce the family of transformations

x̃ = x̃(x(a, t), ε), r̃ = r̃(t, ε), φ̃ = φ̃(t, ε) (5.9)

depending on a parameter ε > 0 where functions x̃(x, ε), r̃(t, ε) and φ̃(t, ε) are twice
differentiable with respect to ε and the value ε = 0 corresponds to the exact solution
(5.6):

x̃(x(a, t), 0) = x(a, t), r̃(t, 0) = R(t), φ̃(t, 0) = 0. (5.10)

In (5.9), (5.10) x(a, t) ∈ ∂Df0(t) and a is the Lagrangian coordinate (label) of a fluid
element. For any fixed moment of time t the transformations defined by (5.9)–(5.10)
can be interpreted as a ‘virtual motion’ of the system ‘body + fluid’ with a ‘virtual
time’ ε; x (x ∈ Df0) serves as a label to identify the fluid particle, while x̃(x, ε)

represents its trajectory. The domain Df0(t) = D̃f(t, 0) evolves to a new one D̃f(t, ε)
which is completely determined by the position and the orientation of the rigid body,
i.e. by r̃(t, ε) and φ̃(t, ε). x̃(x, ε), r̃(t, ε) and φ̃(t, ε) are specified through functions
f(x̃, t, ε), h(t, ε) and g(t, ε) by the same equations as (3.3):

x̃ε = f(x̃, t, ε), r̃ε = h(t, ε), φ̃ε = g(t, ε), (5.11)

where h(t, ε), g(t, ε) are arbitrary differentiable (with respect to ε) functions and
f(x̃, t, ε) is an arbitrary vector field differentiable with respect to ε and satisfying the
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conditions†
∇̃ · f = 0 in D̃f(t, ε), (5.12a)

f · n =
[
r̃ε + ϕ̃ε ×

(
x̃− r̃)] · n on ∂D̃b(t, ε), (5.12b)∣∣f ∣∣→ 0 as r̃ →∞. (5.12c)

In (5.12) we used the notation

ϕ̃iε ≡ − 1
2
eijk

∂P̃jl

∂φ̃m
P̃klφmε = − 1

2
eijk

∂P̃jl

∂φ̃m
P̃klgm. (5.13)

The actual velocity field of the fluid and the actual generalized velocity of the
rigid body in ‘virtual motion’ are described by twice differentiable (with respect to
ε) functions ũ(x̃, t, ε), w̃(t, ε) and ζ̃(t, ε) such that the value ε = 0 corresponds to the
steady state (5.6):

ũ(x̃, t, ε)|ε=0 = U (x̃, t), w̃(t, ε)|ε=0 = W (t), ζ̃(t, ε)|ε=0 = ζ(t) ≡ dφ/dt = 0. (5.14)

In addition, the field ũ(x̃, t, ε) satisfies the conditions

∇̃ · ũ = 0 in D̃f(t, ε), (5.15a)

ũ · n = (w̃ + σ̃ × (x̃− r̃)) · n on ∂D̃b(t, ε), (5.15b)

r3/2
∣∣ ũ ∣∣→ 0, r4

∣∣ ω̃ ∣∣→ 0 as r →∞. (5.15c)

Here σ̃ as a function of φ̃ and ζ̃ is given by (4.13). The evolution with the ‘time’ ε of
the generalized velocities w̃(t, ε) and ζ̃(t, ε) is prescribed by the equations

w̃ε = h∗(t, ε), ζ̃ε = g∗(t, ε) (5.16)

with some differentiable functions g∗(t, ε) and h∗(t, ε). Note that the functions g(t, ε),
h(t, ε), g∗(t, ε) and h∗(t, ε) which determine the evolution in the ‘virtual motion’ of the
generalized velocities and coordinates are all arbitrary, so that φ̃(t, ε), r̃(t, ε), ζ̃(t, ε)
and w̃(t, ε) vary independently.

The evolution of the field ũ(x̃, t, ε) is defined by the equation

ũε = f × ω̃ + ∇̃α (5.17)

with some function α(x̃, t, ε) which, as follows from (5.15), (5.17), can be found by
solving the problem (cf. (3.11))

∇̃2α = −∇̃ · (f × ω̃) in D̃f(t, ε), (5.18a)

n · ∇̃α = ũε · n− n · (f × ω̃) on ∂D̃b(t, ε), (5.18b)

r̃3/2
∣∣ ∇̃α ∣∣→ 0 as r̃ →∞. (5.18c)

Consider now the conserved functional

I = E + λN1, (5.19)

with an arbitrary constant λ. We shall show that with a certain choice of λ the first
variation δI evaluated at the basic state (5.6) vanishes, i.e. this functional has a
critical point.

† In principle, the condition (5.12c) can be replaced by a weaker one: |f| → const as r̃ →∞.



58 V. A. Vladimirov and K. I. Ilin

The calculation of the first variation of E is similar to that of § 3 and results in

δE = δEf + δEb, δEb ≡MW · δw + δΠ, (5.20a)

δΠ ≡ ∂Π

∂R1

δR1 +
∂Π

∂R2

δR2 +
∂Π

∂φ
δφ, (5.20b)

δEf ≡
∫
Df0

ρU0{δx · ∇(ez ·U)+ δx · [Ω× ez]}dτ

−
∫
∂Db0
{P (δy · n)+ ρU0α

(
ez · n)}ds. (5.20c)

The first variation of the momentum N is given by

δN = δNf + δNb, δNb ≡Mez · δw,
δNf ≡ ∫Df0

ρU0δx · [Ω× ez]dτ+
∫
∂Db0 ρ{

(
δy · n)(ez ·U)− α(ez · n)}ds.

}
(5.21)

In the derivation of (5.21) we have used the well known rule of differentiating an
integral over a material surface. Now it follows from (5.8), (5.20), (5.21) that

δI = 0 if λ = −U0.

Thus, we have shown that the functional I with λ = −U0 has a critical point at any
solution of the form (5.6) provided that we take account only of ‘isovortical’ fluid
flows.

5.3. The second variation

The procedure for calculating δ2I is analogous to our calculations in § 4. The only
new feature is that we need to calculate the second derivative with respect to ε of a
material surface integral. It can be shown by applying twice the usual formula for the
rate of change of an integral over a material surface (see e.g. Batchelor 1967) that for
any sufficiently smooth field F (x̃, ε) the following equality is valid:

d2

dε2

∫
∂D̃b(ε)

F · n ds =

∫
∂D̃b(ε)
{n · F εε + 2(n · f)∇̃ · F ε + (n · fε)∇̃ · F

+(n · f)(f · ∇̃)∇̃ · F }ds.
By using this formula and following the same procedure as in § 4 we arrive at the
expression

δ2I = δ2IA + δ2Ic + δ2Ib, (5.22a)

2δ2IA ≡
∫
Df0

ρ[
(
δu
)2

+U ∗ · (δx× δω)]dτ, (5.22b)

2δ2Ic ≡
∫
∂Df0

[2ρU ∗ · u− δy · ∇P ]
(
δy · n)ds

+

∫
∂Df0

ρ[δx · ∇H∗](δy · n)ds− ∫
∂Df0

Pn · (δr × δφ)ds, (5.22c)
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2δ2Ib ≡M(δw)2
+ δσ · Î · δσ +

∂2Π

∂Ri∂Rk
δRiδRk +

∂2Π

∂φi∂φk
δφiδφk

+2
∂2Π

∂Ri∂φk
δriδφk + 2{Πψδθδφ−Πθδψδφ+Πφδψδθ}, (5.22d)

where U ∗ ≡ U −U0ez , H
∗ ≡ P/ρ+ Φ+ 1

2
|U ∗|2 and where

Πψ ≡ ∂Π/∂ψ
∣∣
φ=0

, Πθ ≡ ∂Π/∂θ
∣∣
φ=0

, Πφ ≡ ∂Π/∂φ
∣∣
φ=0

.

It can be shown that in the presence of fixed rigid boundaries that are invariant
with respect to translations along the z-axis the second variation of I is also given
by (5.22). We conclude then that the stability problem for a body moving through a
fluid that extends to infinity in some or all directions is reduced to the search for the
conditions under which the second variation (5.22) is of definite sign.

6. Variational principles for the basic states that are steady relative to a
steadily rotating reference frame

It is known that if a dynamical system is invariant with respect to rotations round
an axis then it has an additional constant of motion, the projection on this axis
of the angular momentum of the system. In this case it is possible to establish a
variational principle for such a state of the system that is steady relative to a frame
of reference rotating round the axis with constant angular velocity. Such a principle
will be established in this section.

Consider the situation when no external moment of force along a fixed axis, say
the z-axis, is applied to the system ‘body + fluid’. In other words, we suppose that

ez · [x× ∇Φ] = 0, (6.1)

and that Π does not depend on the Euler angle φ: ∂Π/∂φ = 0 (i.e. φ is a cyclic
coordinate). Throughout this section the system ‘body + fluid’ will be interpreted,
in accordance with Remark A of § 4, as a rigid body with a cavity containing a
fluid. Under these assumptions there exists an additional invariant of the problem, a
z-component of the angular momentum of the system:†

L = Lb + Lf = ez · (Mr × ṙ + Î · σ) +

∫
Df
ρ ez · [x× u]dτ = const . (6.2)

6.1. Basic state

As a basic state whose stability will be studied we consider the state of the system that
is steady relative to the coordinate system rotating with a constant angular velocity
σ0. In axes fixed in space the basic state is given by

u = U (x, t), w = W (t), σ = Σ = σ0ez,

r = R(t), ψ = 0, θ = 0, φ = σ0t.

}
(6.3)

Since relative to the rotating set of axes Ox′1x′2x′3 the basic state is steady we have

∂U ′(x′, t)/∂t = 0, (6.4)

† For conservation of the angular momentum in the case of a body placed in a fluid, the (fixed)
outer boundary ∂D of the fluid domain must be axisymmetric.
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where, by definition,

U ≡ P̂ ·U ′ and x ≡ P̂ · x′ (6.5a)

with rotation matrix P̂ given by

P̂ =

 cos (σ0t) sin (σ0t) 0
− sin (σ0t) cos (σ0t) 0

0 0 1

 . (6.5b)

In (6.4), (6.5), U ′i (i = 1, 2, 3) represent the components of the absolute velocity vector
U relative to the rotating set of axes Ox′1x′2x′3. On differentiating (6.5a) with respect
to time, we obtain

∂U (x, t)/∂t = σ0[ez ×U ]− σ0[(ez × x) · ∇]U . (6.6)

After substitution this in (2.1) we find that in the basic state the velocity field U is a
solution of the problem

Ω×U + σ0[ez ×U ]− σ0[(ez × x) · ∇]U = −∇H, ∇ ·U = 0 in Df0(t);

U · n = σ0[ez × x] · n on ∂Df0(t),

}
(6.7)

where H ≡ P + Φ + 1
2
U 2. Here as in the previous section the fluid domain in the

basic state depends on time.
In the basic state, the force and torque exerted on the body by the fluid are balanced

by the externally applied force and torque:

Mσ2
0(ez × (ez × R)) = −∂Π

∂r
+

∫
∂Db0

Pnds, (6.8a)

∫
∂Db0

P ez · ((x− R)× n)ds = 0, (6.8b)

∂Σ

∂ψ̇
· (Σ× (Î · Σ)) = −∂Π

∂ψ
+

∫
∂Db0

P
∂Σ

∂ψ̇
· ((x− R)× n)ds, (6.8c)

∂Σ

∂θ̇
· (Σ× (Î · Σ)) = −∂Π

∂θ
+

∫
∂Db0

P
∂Σ

∂θ̇
· ((x− R)× n)ds, (6.8d)

where the derivatives with respect to r, φ and φ̇ are taken at the point r = R,
φ = (0, 0, σ0t), in particular:

∂Σ/∂ψ̇ = (cos (σ0t), sin (σ0t), 0), ∂Σ/∂θ̇ = (− sin (σ0t), cos (σ0t), 0). (6.8e)

6.2. Variational principle

Consider now the conserved functional

I = E + λL, (6.9)

with some constant λ. We shall show that with a certain choice of λ the first variation
δ1I evaluated at the basic state (6.3) vanishes.

Calculation of the first variation of E is similar to that of § 5 and results in

δE = δEf + δEb, δEb ≡MW · δw + IikΣkδσi − δϕ · [Σ× (Î · Σ)],

δEf ≡ ∫Df0
ρσ0δx · {[(ez × x)]U − ez ×U}dτ+

∫
∂Db0{ραU · n− Pδx · n}ds.

}
(6.10)
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The first variation of the angular momentum L is given by the equation

δL = δLf + δLb, (6.11a)

δLb ≡Mez · [δr ×W ] +Mez · [R× δw]

+ez · Î · δσ + [Σ× δϕ] · Î · ez − [δϕ× ez] · Î · Σ, (6.11b)

δLf ≡
∫
Df0

ρ δx · {[(ez × x)]U − ez ×U}dτ+

∫
∂Db0

ρα n · [ez × x]ds. (6.11c)

Using (6.8), we find from (6.10), (6.11) that

δI = 0 if λ = −σ0.

We have thus shown that on the set of ‘isovortical’ flows the functional I with
λ = −σ0 has a critical point at any solution of the form (6.3).

6.3. The second variation

Similar to those in §§ 4 and 5 the procedure for calculating the second variation of I
can be shown to give the following expression:

δ2I = δ2IA + δ2Ic + δ2Ib, (6.12a)

2δ2IA ≡
∫
Df0

ρ[
(
δu
)2

+U ∗ · (δx× δω)]dτ, (6.12b)

2δ2Ic ≡
∫
∂Db0

[2ρU ∗ · u− δy · ∇P ]
(
δy · n)ds

+

∫
∂Db0

ρ[δy · ∇(H − σ0h
)
]
(
δy · n)ds− ∫

∂Db0
Pn · (δr × δϕ)ds, (6.12c)

2δ2Ib ≡M(δw)2
+ δσ · Î · δσ +

∂2Π

∂Qα∂Qβ
δqαδqβ

−2Mσ0ez · [δr × δw]− σ2
0{
(
ez · δϕ)(δϕ · Î · ez)− (δϕ)2(

ez · Î · ez)
+
(
ez × δϕ) · Î · (ez × δϕ)}+ 2δφ(δθΠψ − δψΠθ), (6.12d)

where

U ∗ ≡ U − σ0

(
ez × x), h ≡ U · (ez × x).

Remark. Evidently, all results of this section are valid in the case of a body placed
in an axisymmetric domain D filled with a fluid, the corresponding second variation
being given by (6.12).

7. Variational principle for a two-dimensional problem
In this section we consider the simpler situation when the body is an infinite

cylinder with an arbitrary cross-section moving perpendicularly to its axis and the
flow is two-dimensional, i.e. it does not depend on the coordinate along the axis of
a cylinder. In two-dimensional motion the position and the orientation of the body
can be described by three independent quantities: two Cartesian components of the
radius-vector of the centre of mass of the body r = (r1, r2) and an angle φ that
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represents a rotation of the body around the z-axis (which is perpendicular to the
plane of motion). The equations of motion of the body reduce to

Mẇi ≡Mr̈i =

∫
∂Db

pnidl − ∂Π(r, φ)/∂ri, (7.1a)

Iσ̇ ≡ Iφ̈ =

∫
∂Db

ez · [(x− r)× n]pdl − ∂Π(r, φ)/∂φ, (7.1b)

where I is the moment of inertia of the body (I represents an Izz-component of the
inertia tensor Iik). The equations of motion of the fluid (2.1) remain the same except
that the velocity field u(x, t) now has only two non-zero components u = (u1, u2)
depending on two Cartesian coordinates x = (x1, x2); the boundary conditions (2.7)
take the form

u · n = 0 on ∂D, (7.2a)

u · n = (w + σez × (x− r)) · n on ∂Db. (7.2b)

Note that equation (2.2) for vorticity in the two-dimensional case simplifies to

Dω = 0

where ω ≡ ez · ∇× u is a z-component of the vorticity.
The global invariants of (2.1), (7.1) with boundary conditions (7.2) are the total

energy

E = Ef + Eb = const, (7.3a)

Ef ≡
∫
Df
ρ
(

1
2
u2 + Φ

)
dτ, (7.3b)

Eb ≡ 1
2
Mw2 + 1

2
Iσ2 +Π(r, φ), (7.3c)

the Casimir invariant

C =

∫
τ−τb

ρF(ω)dτ = const, (7.4)

and circulations of velocity round the closed curves ∂D and ∂Db

Γ0 =

∫
∂D
u · dl = const, Γb =

∫
∂Db

u · dl = const. (7.5)

F(ω) that appears in (7.4) is an arbitrary smooth function.

7.1. Basic state

An exact steady solution of (2.1), (7.1), (7.2) whose stability will be investigated is a
two-dimensional analogue of (2.9) given by

r = 0, φ = 0, w = 0, σ = 0; (7.6a)

u = U (x) in Df0. (7.6b)

The velocity field U (x) in (7.6) is a solution of the problem

(U · ∇)U = −1

ρ
∇P − ∇Φ, ∇ ·U = 0 in Df0; (7.7a)

U · n = 0 on ∂Db0 and ∂D. (7.7b)
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At equilibrium, the total force and torque exerted by the fluid on the body are
balanced by the external force and torque applied to the body (cf. (2.11)):

∂Π/∂r|r,φ=0 =

∫
∂Db0

Pn dl, ∂Π/∂φ|r,φ=0 =

∫
Db0
P ez · (x× n)dl. (7.8)

As usual, in the two-dimensional case we introduce the stream function Ψ (x) of the
basic flow defined by the equation

U ≡ −∇× (Ψez), (7.9)

so that the vorticity of the basic flow is given by the equation Ω ≡ ez · ∇×U = ∆Ψ .
The curl of (7.7a) simplifies to the equation

U · ∇Ω = 0.

Therefore,

Ω = Ω(Ψ ). (7.10a)

Equation (7.7a) can be rewritten in the form

Ω∇Ψ = ∇H, H ≡ G+ P/ρ, G ≡ Φ+UiUi/2, (7.10b)

from which it follows that

H = H(Ψ ), Ω(Ψ ) = dH/dΨ. (7.10c)

If Ω′ ≡ dΩ/dΨ 6= 0 throughout Df0, then function Ω(Ψ ) can be converted:

Ψ = Ψ (Ω).

In terms of Ψ , boundary conditions (7.7b) become

Ψ = const at ∂Db0 and ∂D. (7.11)

Note that, in view of (7.10a), (7.11), we have

Ω(x) = Ω0 at ∂D and Ω(x) = Ωb at ∂Db0

with some constants Ω0 and Ωb.

7.2. Variational principle

In this subsection we shall establish an energy-type variational principle for the steady
state (7.6). This variational principle is more general than the principles considered
in §§ 3–6 in the sense that here we waive the ‘isovorticity condition’ and consider
arbitrary variations of the velocity field u. As a consequence it is not just a two-
dimensional reduction of the principle of § 3. Moreover, as we shall show at the end
of this section, it implies that the two-dimensional version of the principle of § 3 is a
particular case corresponding to ‘isovortical’ variations.

Consider the functional

I = E + C+ A0Γ0 + AbΓb, (7.12)

where A0, Ab are arbitrary constants. The functional I is a linear combination of the
invariants (7.3)–(7.5), and therefore I = const for any solution of the problem (2.1),
(7.1), (7.2).
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Following our variational procedure of § 3 we introduce the family of transforma-
tions

x̃ = x̃(x, ε), r̃ = r̃(ε), φ̃ = φ̃(ε),

x̃(x, 0) = x, r̃(0) = 0, φ̃(0) = 0,

}
(7.13)

which is interpreted as a ‘virtual motion’ of the system. Recall that under this
transformation the domain Df0 = D̃f(0) evolves to a new one D̃f(ε) which is entirely
determined by the position and the orientation of the rigid body, i.e. by r̃(ε) and
φ̃(ε). The variation with ‘time’ ε of the functions x̃(x, ε), r̃(ε) and φ̃(ε) is given by the
equations

dx̃/dε = f(x̃, ε), dr̃/dε = h(ε), dφ̃/dε = g(ε), (7.14)

where f(x̃, ε), h(ε) and g(ε) are arbitrary differentiable (with respect to ε) functions
except that f(x̃, ε) satisfies the conditions

∇̃ · f = 0 in D̃f(ε), (7.15a)

f · n = 0 on ∂D̃. (7.15b)

f · n = (h+ g[ez × (x̃− r̃)]) · n on ∂D̃b(ε). (7.15c)

The ‘evolution’ with ε of the velocity field of the fluid and the velocity of the body is
described by functions ũ(x̃, ε), w̃(ε) and σ̃(ε) such that

ũ(x̃, 0) = U (x̃), w̃(0) = 0, σ̃(0) = 0,

∇̃ · ũ = 0 in D̃f,

ũ · n = 0 on ∂D̃,
ũ · n = (w̃ + σ̃

[
ez × (x̃− r̃)]) · n on ∂D̃b(ε).

The only difference between the variational principle that follows and the principles
of §§ 3 and 5 is that we admit arbitrary variations of the velocity field (not only
isovortical ones as in §§ 3 and 5 (see (3.10)), i.e.

ũε = v(x̃, ε), w̃ε = h∗(ε), σ̃ε = g∗(ε) (7.16)

with arbitrary functions v(x̃, ε), h∗(ε) and g∗(ε).
Let us now calculate the first variation of I. Using the formula for differentiating

a material volume integral (see Batchelor 1967) we find

δ(Ef + C) =

∫
Df0

ρ(U · δu+ F ′(Ω)δω)dτ+

∫
∂Db0

ρ(G+ F(Ω))
(
δy · n)dl. (7.17)

Obviously,

δΓ =

∫
∂D
δu · dl. (7.18)

Further, using the formula for differentiating a line integral over material curve (see
Batchelor 1967) we obtain

δΓ =

∫
∂Db0

τ · δu dl +

∫
∂Db0

(τ · (δx · ∇)U +U · (τ · ∇)δx)dl. (7.19)

In (7.19) τ = ez × n is the unit vector tangent to the curve ∂Db0, so that dl = τdl. It
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can be shown that

τ · (δx · ∇)U = (δx · n)Ω + (τ · ∇)(U · δx)−U · (τ · ∇)δx.

On substituting this in (7.19) and using the fact that Ω = const on ∂Db0, we find

δΓ =

∫
∂Db0

δu · dl.
Finally, for the first variation of I we obtain the formula

δI =

∫
Df0

ρ(U · δu+ F ′(Ω)δω)dτ+

∫
∂Db0

ρ(G+ F(Ω))n · δy dl

+MW · δw + IΣδσ + A0

∫
∂D
δu · dl + Ab

∫
∂Db0

δu · dl,

where F ′(Ω) ≡ dF(Ω)/dΩ, and G is given by (7.10b). On integrating by parts, δI can
be rewritten in the form

δI =

∫
Df0

ρ(U + ∇× [F ′(Ω)ez]) · δu dτ+MW · δw + IΣδσ

+

(
∂Π/∂ri +

∫
∂Db0

ρniGdl

)
δri +

(
∂Π/∂φ+

∫
∂Db0

ρez · (x× n)Gdl

)
δφ

+(A0 + ρF ′(Ω0))

∫
∂Db0

δu · dl + (Ab + ρF ′(Ωb))
∫
∂Db0

δu · dl. (7.20)

In (7.20), the derivatives ∂Π/∂ri, ∂Π/∂φ are taken at r = 0, φ = 0. We now show
that with an appropriate choice of the function F(ω) and constants Ab, A0

δI = 0

for any equilibrium given by (7.6)–(7.8).
From (7.20) it is evident that the first variation vanishes under the following

conditions:

W = 0, Σ = 0; (7.21a)

A0 = −ρF ′(Ω0), Ab = −ρF ′(Ωb); (7.21b)

U = −∇× [F ′(Ω)ez]; (7.21c)

∂Π/∂Ri = −
∫
∂Db0

ρniGdl, ∂Π/∂φ = −
∫
∂Db0

ρez · (x× n)G dl. (7.21d)

Note first that (7.21a) coincide with (7.6a), and therefore they are satisfied. Recalling
that constants Ab, A0 are still arbitrary we now choose them so as to satisfy the
conditions (7.21b), in other words, we consider (7.21b) as the definitions of Ab, A0.
Further, in view of (7.9) a natural choice of function F(Ω) to satisfy (7.21c) is given
by

F ′(Ω) = Ψ (Ω). (7.22)

Finally, according to (7.10b), (7.10c), (7.11), G = −P/ρ+ const on ∂τb0, and therefore
the conditions (7.21d) coincide with (7.8).

Thus, we have shown that the functional I (7.12) with function F(ω) and constants
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Ab, A0 defined by (7.22) and (7.21b) respectively has a stationary point at any steady
solution (7.6) of the problem (2.1), (7.1), (7.2).

This result is a natural generalization of the well-known variational principle
obtained by Arnold (1965a).

7.3. The second variation

Calculation of the second variation of I is very similar to what we have already
calculated in § 4. In the two-dimensional case the formula (4.4) takes the form

d2

dε2

∫
D̃f
F(x̃, ε)dτ =

∫
D̃f
Fεεdτ+

∫
∂D̃b

(2Fε + yε · ∇̃F)(yε · n)ds

+

∫
∂D̃b

F(τ · r̃ε)φ̃ε ds+

∫
∂D̃b

F(r̃εε + φ̃εε[ez × (x̃− r̃)]) · n ds.

After applying this for calculating d2Ef/dε
2 and after subsequent manipulations that

are nearly the same as in § 4, it can be shown that

δ2I = δ2IA + δ2Ic + δ2Ib, (7.23a)

2δ2IA ≡
∫
Df0

ρ((δu)2 +
dΨ

dΩ
(δω)2)dτ, (7.23b)

2δ2Ib ≡M(δw)2 + I(δσ)2 + 2δ2Π, (7.23c)

2δ2Π ≡ Πikδriδrk + 2Πφiδφδri +Πφφ(δφ)2, (7.23d)

Πik ≡ ∂2Π

∂ri∂rk

∣∣∣∣
r,φ=0

, Πφi ≡ ∂2Π

∂φ∂ri

∣∣∣∣
r,φ=0

, Πφφ ≡ ∂2Π

∂φ2

∣∣∣∣
r,φ=0

, (7.23e)

2δ2Ic ≡
∫
∂Db0

ρ(δy · n)(2U · δu+ δy · ∇G)dl +

∫
∂Db0

ρGδφδr · dl. (7.23f)

δ2IA is precisely the second variation of Arnold (1965a) obtained for the problem
with a fixed rigid boundary. δ2Ib represents the second variation of the energy of the
rigid body alone. And δ2Ic involves the variations of the velocity field of the fluid as
well as the variations related to the body and corresponds to the interaction between
the fluid flow and the body.

Again, the general theory (Arnold 1965a, b, 1966; see also Holm et al. 1985;
Vladimirov 1987b) states that if we consider the independent variations δu, δr, δϕ as
the infinitesimal disturbances to the basic state (7.6), whose evolution is governed by
the appropriate linearized equations, then δ2I is an invariant of these equations. If
δ2I is positive definite then we can take δ2I as a norm of the disturbance, and the
linear stability (in the sense of Lyapunov) of the basic state (7.6) immediately follows
from conservation of δ2I. We may thus conclude that the stability problem reduces
to the problem of identifying the conditions under which δ2I is positive definite.

7.4. ‘Isovortical’ perturbations and flows with constant vorticity

δ2IA exists only if dΨ/dΩ is a bounded function of x in Df0. This evidently is not
true if Ω′ ≡ dΩ/dΨ vanishes at some point in Df0. To deal with such situations we,
as in § § 3–6, consider ‘isovortical’ perturbations.
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From (3.9) we find that

δω = −δx · ∇Ω = −Ω′(Ψ )δx · ∇Ψ, (7.24)

where, as before, δx is the Lagrangian displacement of a fluid element. In view of
(7.24), for ‘isovortical’ perturbations δ2IA transforms to

2δ2IA ≡
∫
Df0

ρ[(δu)2 + Ω′(Ψ )(δx · ∇Ψ )2]dτ. (7.25)

For the important class of steady flows with constant vorticity, Ω′ ≡ 0, and (7.25)
reduces to

2δ2IA ≡
∫
Df0

ρ
(
δu
)2

dτ,

where, according to (7.24), the velocity variation is potential (δu = ∇ϕ).

Remark. In the two-dimensional problem the variational principles for the states
that are steady in a reference frame translationally moving or rotating round some
fixed axis can be established by considering the linear combinations of the energy
and the momentum or of the energy and the angular momentum of the system. In a
particular case of ‘isovortical’ perturbations the corresponding second variations are
obtained by the two-dimensional reduction of the expressions (5.22) and (6.12).

8. Applications
As was demonstrated by Rouchon (1991) and by Sadun & Vishik (1993), in

the three-dimensional case Arnold’s second variation of the kinetic energy is, in
general, indefinite in sign. δ2EA, entering the general formula (4..11) for the second
variation, is the same as Arnold’s second variation (Arnold 1965b) and, therefore,
is also indefinite in sign. Clearly, δu, δx and δω defined in the domain Db0 may
be prescribed independently of the variations in the position and orientation of
the body. Therefore, possible sign-indefiniteness of δ2EA cannot be compensated by
δ2Ec and δ2Eb also entering the expression (4.11). Thus, we may conclude that in
the three-dimensional case most of the steady states of the system ‘body + fluid’
correspond to sign-indefinite second variations. Nevertheless, there is a number of
exceptional situations (such as rigid rotation, potential flows, flows with constant
vorticity and two-dimensional flows †) which are interesting and which can give us
positive-definite second variations and corresponding stability criteria. To demonstrate
this, we shall apply the general theory of the preceding sections to three particular
stability problems.

8.1. Steady translational motion of a cylinder (irrotational flow)

Consider an infinitely long cylinder of an arbitrary cross-section steadily moving
perpendicular to its axis through a fluid that extends to infinity in all directions
and is at rest there. We assume that the flow is irrotational and two-dimensional,
and that there is non-zero circulation of velocity about the cylinder. Homogeneous
gravitational force is also taken into consideration.

In the basic state whose stability is studied the cylinder moves along one of the
principal axes of its added-mass tensor (it can be easily shown that this is the only

† Some results on the two-dimensional problem may be found in the papers by Vladimirov &
Ilin (1994, 1996, 1998).
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possible purely translational motion). Let it be the x-axis. The basic state is given by

u = U (x− R(t)) = ∇ϕ0, w = Ṙ = U0ex, R = U0tex, σ = 0, (8.1)

with the velocity potential ϕ0(x− R(t)) being a solution of the following problem:

∇2ϕ0 = 0 in Df, n · ∇ϕ0 = n · exU0 on ∂Db0,

∫
∂Db0
∇ϕ0 · dl = Γ . (8.2)

The pressure is determined from Bernoulli’s equation

P/ρ−U0ex · ∇ϕ0 +
(∇ϕ0

)2
/2 + gey · x = 0.

The balance of the forces on the body reduces to

ρΓU0 = (M − µ)g, µ ≡
∫
∂Db0

ρdτ. (8.3)

We assume that the body is homogeneous in density, i.e. its geometrical centre
coincides with the centre of mass:∫

Db
(x− R)dτ = 0. (8.4)

One more assumption is that the conformal centre of the body (see e.g. Milne-
Thomson 1973) coincides with its geometrical centre†. It may be shown that this, in
view of (8.4), has a consequence that∫

∂Db0
(x− R)∇ϕΓ · dl = 0 (8.5)

where ϕΓ is the cyclic part of the potential ϕ0 and is defined as a solution of the
problem

∇2ϕΓ = 0 in Df0, n · ∇ϕΓ = 0 on ∂Db0,

∫
∂Db0
∇ϕΓ · dl = Γ . (8.6)

Equations (8.4), (8.5) and the assumption that the orientation of the body is such that
one of the principal axes of its added-mass tensor is parallel to the x-axis have, in
turn, a consequence that the total torque (relative to the centre of mass) exerted on
the body by the fluid vanishes, i.e.∫

∂Db0
ez · [(x− R)× n]Pdl = 0. (8.7)

Variational principle. When the circulation about the body is non-zero the energy of
the fluid (as well as the momentum) is infinite. In this situation, as was mentioned in
§ 5 it is natural to use the vortex energy and vortex momentum. Then the total energy
and the x-component of the total momentum of the system are given by

E = Ef + Eb, Ef ≡ − 1
2

∫
∂Db

ρψu · dl, Eb ≡ 1
2
Mw2 + 1

2
Iσ2 + (M − µ)gey · r,

N = Nf +Nb, Nf =

∫
∂Db

ρ(ey · x)u · dl, Nb = M ṙ.

† It is definitely so at least for the bodies that are symmetric relative to both coordinate axes,
e.g. for an ellipse.
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Conservation of E and N given by these formulae is easily verified by direct calcula-
tion. We shall show that the conserved functional I = E −U0N has a critical point
in the basic state (8.1).

For an irrotational flow, (5.17) reduces to

ũε = ∇̃α, (8.8)

where function α(x̃, t, ε) is a solution of the problem (cf. (5.18))

∇̃2α = 0 in D̃f(t, ε), n · ∇̃α = n · ũε on ∂D̃b(t, ε),

∫
∂D̃b(t,ε)

∇̃α · dl = 0. (8.9)

We suppose that the value of n · ũε on D̃b(t, ε) has been determined by differentiation
(with respect to ε) of the boundary condition (5.15b).

Consider now the functional I = E−U0N. Differentiation of E and N with respect
to ε at ε = 0 gives

δE = −
∫
∂Db0

ρ[
(
δu · τ)Ψ − (δy · n)U 2/2]dl +MU0ex · δw +

(
M − µ)gey · δr (8.10)

and

δN =

∫
∂Db0

ρ[
(
δu · τ) x · ey +

(
δy · n) ex · ∇ϕ0]dl +Mδw. (8.11)

Since∫
∂Db0

ρ
(
δy · n)U 2/2 dl =

∫
∂Db0

(
δy · n)(ρU0ex · ∇ϕ0 − P − ρgey · x)dl

=

∫
∂Db0

(
δy · n)ρU0ex · ∇ϕ0dl −

∫
∂Db0

(
δy · n)P dl + µgey · δr,

we obtain

δI = −
∫
∂Db0

ρ
(
δu · τ)(Ψ +U0x · ey)dl +

{
Mgey −

∫
∂Db0

Pn dl

}
· δr

−
∫
∂Db0

δφez · [(x− R)× n]Pdl,

whence, in view of (8.3), (8.7),

δI = −
∫
∂Db0

ρ
(
δu · τ)(Ψ +U0x · ey)dl. (8.12)

From the boundary condition n · ∇ϕ0 = n · exU0 on ∂Db0 and from the definition of
the stream function Ψ (7.9), we find that

Ψ = −U0x · ey + const on ∂Db0,

and therefore δI = 0.

Stability criterion. Calculation of the second variation ofI is analogous to calculations
of §§ 4–7 and results in (cf. (7.23))

2δ2I = −
∫
∂Db0

ρ[
(
δu · τ)δψ − (δy · n)(2U ∗ · δu+ (δy · ∇)U ∗2/2

)
+δφ

(
δr · τ)U ∗2/2)]dl +M

(
δṙ
)2

+ I
(
δφ̇
)2
. (8.13)
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Here U ∗ ≡ ∇ϕ0 − U0ex. After standard but quite tedious manipulations using the
irrotatonal character of the basic state and the boundary condition

n · ∇δϕ = δẏ · n+ τ · ∇[(δy · n)(U · τ)] on ∂Db

(which can be derived by differentiating the condition (3.7c) with respect to ε), formula
(8.13) can be transformed to

δ2I = 1
2

∫
Df0

ρ(δũ
)2

dτ+ 1
2
M
(
δṙ
)2

+ 1
2
I
(
δφ̇
)2

+ 1
2

(
µ11 − µ22

)
U2

0

(
δφ
)2

+U0

(
δφ
)2
∫
∂Db0

ρ
[
ey · (x− R)

]∇ϕΓ · dl (8.14)

where µ11, µ22 are (main) added-mass coefficients corresponding to a motion of the
body along the x- and y-axes respectively and where δũ is the velocity field of the
fluid produced by a body moving translationally with velocity δṙ and rotating with
angular velocity δφ̇. Comparing the integral over the body surface in (8.14) with (8.5),
we conclude that it vanishes, and the second variation reduces to

δ2I = 1
2

∫
Df0

ρ(δũ
)2

dτ+ 1
2
M
(
δṙ
)2

+ 1
2
I
(
δφ̇
)2

+ 1
2

(
µ11 − µ22

)
U2

0

(
δφ
)2
. (8.15)

Now it is clear that δ2I is positive definite and therefore the basic state (8.1) is linearly
stable provided that µ11 > µ22. We have thus obtained the following stability criterion:
the translational motion of a rigid body along the principal axis of its added-mass tensor
which corresponds to a maximum added mass is linearly stable.

Note that for a translational motion of a body without circulation (Γ = 0) and
without the external gravity force, the corresponding second variation and the stability
condition are the same as above. We therefore may conclude that the presence of
non-zero circulation does not affect the stability of the body (at least for the class of
bodies considered here) – an interesting result which seems to be new.

Remark: a circular cylinder in a flow with constant vorticity. The result obtained
above shows that possible instability of a body may result in rotation of the body
around its centre of mass, and the instability may happen only if the body is not a
circular cylinder (translational motion of a circular cylinder is stable). This, however,
is not true if the flow is not irrotational. To illustrate this, we consider the stability of
a circular cylinder translationally moving through a fluid which is in simple shearing
flow at infinity. In a reference frame moving with the cylinder, the basic state is given
by the equations (see Batchelor 1967)

u = U (x) = −∇× (Ψez), w = Ṙ = 0, R = 0, σ = 0;

Ψ = 1
2
Ω0r

2sin2θ +U0r sin θ +
Γ

2π
log r − 1

r
U0a

2sin θ +
1

4r2
Ω0a

4cos 2θ.

Here a is the radius of the cylinder, (r, θ) are polar coordinates, and U (x) →
−ex(U0 + Ω0y) as r → 0. In the basic state, the gravitational force is balanced by the
lift force:

ρU0

(
2πa2Ω0 + Γ

)
= (M − µ)g, µ ≡

∫
∂Db0

ρdτ.

It may be shown that the second variation (7.23) reduces to

2δ2E = (M + µ)(δṙ)2 − (2µΩ0 + ρΓ )Ω0(δr2)
2, µ = ρπa2.
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Evidently, in contrast to the case of irrotational flow, there are situations when δ2E
is indefinite in sign (for example, if U0 > 0, Ω0 > 0 and M − µ > 0).

8.2. Steady rotation of a force-free rigid body with a fluid-filled cavity

Consider now the force-free motion of a rigid body with a cavity completely filled
with an ideal fluid. Obviously, the only non-trivial motion of such a system is motion
relative to a fixed centre of mass of the whole system. The basic state whose stability
will be studied is the rotation with constant angular velocity σ0 of the whole system
round the z-axis passing through the centre of mass of the system. For this basic
state, equations (6.7), (6.8) can be shown to have a consequence that the z-axis must
be one of the principle axes of the moment of inertia of the system, i.e.

Is13 = Is23 = 0, Isik = Iik + I
f
ik, I

f
ik ≡

∫
Df0

ρ
(
x2δik − xixk)dτ.

Without loss of generality, the (x′, y′)-axes fixed in the body can be taken so as to
coincide with the principal axes of inertia of the system; the inertia tensor Î s relative
to a set of axes fixed in space is then given by the formula Î s = P̂ Î ∗P̂−1 where the
matrix P̂ is given by (6.5b) and the inertia tensor of the system written in the body set
of axes has a diagonal form: Î ∗ = diag{I∗11, I

∗
22, I

∗
33} (obviously, I∗33 = Is33). Then after

tedious but elementary manipulations, the second variation (6.12) can be reduced to
the expression

δ2I = 1
2

∫
Df0

ρ(δu)2 + 1
2
δσ · Î s · δσ + 1

2
M(δσ × r − σ0[ez × [ez × δr]])2

+ 1
2
σ2

0(I∗33 − I∗22)(δψ)2 + 1
2
σ2

0(I∗33 − I∗11)(δθ)2.

One can see that δ2I is positive definite and therefore the steady rotation of the
system is linearly stable if I∗33 > I∗11 and I∗33 > I∗22, i.e. the system rotates as a whole
round the principle axis of its moment of inertia tensor which corresponds to the
greatest value of the moment of inertia. Thus, we have rediscovered the result first
obtained by Rumyantsev (see Moiseev & Rumyantsev 1965). We should mention here
that in fact the same condition provides the stability to arbitrary finite-amplitude
perturbations and also remains valid in the case of a viscous fluid (Moffatt & Ilin
1994).

8.3. Steady rotation of a body in a rotating fluid

Consider now a problem which is complementary to the previous one: the stability
of a rigid body placed in a rotating fluid inside an axisymmetric domain. In the basic
state, both the body and the fluid rotate with constant angular velocity σ0 around
the symmetry axis (say, the z-axis) of the domain. The flow is steady relative to the
frame of reference rotating with the same angular velocity and, as was mentioned in
the end of § 6, the theory of § 6 is applicable.

We assume that the body is homogeneous in density and, therefore, its centre of
mass coincides with its geometrical centre. Then, it may be shown that the equations
of the balance (6.8) are satisfied without any external force and torque (Π = 0)
provided that one of the principal axes of body’s moment of inertia tensor coincides
with the axis of the symmetry of the domain. This means that I31 = I32 = 0.

It may be shown by standard manipulations that for the problem considered the
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second variation (6.12) reduces to

δ2I = 1
2

∫
Df0

ρ(δu
)2

+ 1
2
δσ · Î · δσ + 1

2
M(δṙ − σ0ez × δr)2

+ 1
2
µσ2

0

(
1− M

µ

)(
ez × δr)2

+ 1
2
σ2

0

(
1− µ

M

)
((Ib33 − Ib22)(δψ)2+ (Ib33 − Ib11)(δθ)2),

where Ib11, I
b
22 and Ib33 are the principal moments of inertia of the body and, as before

(cf. (8.3)), µ is the mass of the fluid displaced by the body.
Evidently, δ2I is positive definite and, therefore, the basic state is linearly stable

if (i) M < µ, i.e. the density of the fluid is greater than that of the body, and (ii)
Ib33 < Ib11, I

b
33 < Ib22, i.e the axis of rotation corresponds to the smallest moment of

inertia of the body. In particular, if the body is an ellipsoid, its rotation is stable
provided that it rotates around its longest axis.

9. Conclusion
In this paper we have established four energy-type variational principles for general

steady states of the dynamical system ‘ideal fluid + rigid body’. The system may be a
rigid body placed in an arbitrary steady flow of an inviscid incompressible fluid or it
may be a body with a cavity entirely filled with a fluid; no restrictions on the form of
the body or the cavity were imposed. Variational principles have been constructed for
an arbitrary steady state of the system and for unsteady states that are steady either
in a translationally moving reference frame or in a rotating (around some fixed axis)
frame of reference. In the first case it has been shown that the energy of the system
has a stationary value on the set of all states of the system in which fluid flows are
‘isovortical’ to the basic steady flow. In the second one a certain linear combination
of the energy and either the momentum or the angular momentum of the system has
a critical point on the same set of ‘isovortical’ flows.

We have then considered the two-dimensional system ‘body + fluid’, and have
constructed the variational principle for arbitrary steady states of the system. In
contrast with the three-dimensional case, here we have admitted arbitrary variations
of the velocity field of the fluid (not only ‘isovortical’ ones).

For all problems considered the second variations of the corresponding functionals
have been calculated. The general theory of Arnold (1965a, b, 1966) states that the
steady solution is stable (at least in the linear approximation) if the corresponding
functional is of definite sign. Therefore, the stability problem effectively reduces to
the analysis of the second variation.

The general theory developed in the paper has been applied to three particular
problems where the sufficient conditions for stability were obtained, thus proving the
usefulness of the theory.

Many interesting particular problems remain unsolved in this area, in particular the
two-dimensional problem of the stability of a body in a flow with constant vorticity.
This is a subject of a continuing investigation.

The work of K. I. Ilin was supported by Hong Kong UPGC Research Infras-
tructure Grant RI95/96.SC08 and by Hong Kong RGC Earmarked Research Grant
HKUST701/96P.
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Appendix. Derivation of equation (4.4)
It is well known that the rate of change of a material volume integral is given by

the formula (see e.g. Batchelor 1967)

d

dε

∫
D̃f (ε)

F(x̃, ε)dτ =

∫
D̃f (ε)

(Fε + ∇ · (Ff))dτ (A 1)

where F(x̃, ε) is an arbitrary sufficiently smooth function and Fε ≡ ∂F/∂ε. On using
this formula one more time we obtain

d2

dε2

∫
D̃f (ε)

F(x̃, ε)dτ =

∫
D̃f (ε)

[Fεε + ∇ · ([2Fε + ∇ · (Ff)]f) + ∇ · (Ffε)]dτ. (A 2)

To proceed further we need boundary conditions for the function fε(x, ε). Differenti-
ation with respect to ε of the conditions (3.4b, c) results in

fε · n = 0 on ∂D̃. (A 3a)

fε · n = yεε · n+
(
yε − f

) · (ϕε × n)− n · (yε · ∇)f on ∂D̃b(ε), (A 3b)

where we have used the obvious formula nε = ϕε × n, yε is given by (4.5), and where

yεε = r̃εε + ϕ̃εε ×
(
x̃− r̃)+ ϕ̃ε ×

(
x̃ε − r̃ε)

= r̃εε + ϕ̃εε ×
(
x̃− r̃)+ ϕ̃ε ×

[
ϕ̃ε ×

(
x̃− r̃)]. (A 4)

Applying now the divergence theorem to the integral in the right-hand side of (A 2)
and taking account of the boundary conditions (3.4b, c) and (A 3a, b), we obtain

d2

dε2

∫
D̃f (ε)

F(x̃, ε)dτ =

∫
D̃f (ε)

Fεεdτ+

∫
∂D̃b(ε)

[2Fε + f · ∇F]
(
yε · n

)
ds

+

∫
∂D̃b(ε)

F[yεε · n+
(
yε − f

) · (ϕε × n)− n · (yε · ∇)f]ds. (A 5)

Consider now the integral (which appears in (A 5))

I1 =

∫
∂D̃b(ε)

[
(
f · ∇F)(yε · n)− Fn · (yε · ∇)f]ds.

Note first that

Fnkyiε∂ifk = nkyiε∂i
(
Ffk
)− nkfkyiε∂iF,

whence the integrand in I1 can be written in the form(
f · ∇F)(yε · n)− Fn · (yε · ∇)f =

(
yε · ∇F

)(
yε · n

)− B
where

B ≡ yiεnk∂i(Ffk)− nkykεfi∂iF
= nk∂i

[(
yiεfk − ykεfi)F]− Fnkfk∂iyiε + Fnkfi∂iykε.

It follows from (4.5) that

∂iyiε = 0, ∂iykε = eiklφlε.

Therefore,

B = n · ∇× (F[f × yε])+ Ff · [n× ϕε],
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and I1 simplifies to

I1 =

∫
∂D̃b(ε)

[(
yε · ∇F

)(
yε · n

)− Ff · [n× ϕε]]ds, (A 6)

Finally, after substitution of (A 6) in (A 5) and some simple manipulations with the
help of (A 4), we arrive at (4.4).
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